Метан относится. Метан — химические свойства

Содержание
  1. Метан — химические свойства
  2. Формула метана и способы его получения
  3. Физические свойства метана
  4. Химические свойства метана
  5. Применение метана
  6. Метан, получение, свойства, химические реакции
  7. Метан, формула, газ, характеристики:
  8. Физические свойства метана:
  9. Химические свойства метана:
  10. Получение метана в промышленности и в лаборатории. Химические реакции – уравнения получения метана:
  11. Применение и использование метана:
  12. Углеводороды предельные и непредельные: метан, этан, этилен, ацетилен – HIMI4KA
  13. Тренировочные задания
  14. Ответы
  15. Метан – формула, строение и основные свойства природного газа
  16. Физические качества
  17. Химические свойства
  18. Получение в промышленности и лаборатории
  19. Парниковый эффект
  20. Влияние на организм человека
  21. Метан
  22. Нахождение в природе
  23. В промышленности
  24. Классификация по происхождению
  25. Получение
  26. Соединения включения
  27. Физиологическое действие
  28. Хроническое действие метана
  29. Биологическая роль
  30. Метан и экология
  31. Ссылки
  32. Примечания

Метан — химические свойства

Метан относится. Метан — химические свойства

1001student.ru > Химия > Метан — химические свойства

Химические свойства метана ничем не отличаются от свойств, присущих всем веществам класса алканов. В школьном курсе химии метан изучают одним из первых веществ органики, так как он является одним из простейших представителей алканов.

В его составе один атом углерода и четыре атома водорода.

  • Формула метана и способы его получения
  • Физические свойства метана
  • Химические свойства метана
  • Применение метана

Формула метана и способы его получения

Молекулярная формула метанаСтруктурная формула метана
 СH4Н|Н — С — Н|Н

Метан в больших количествах содержится в атмосфере. Мы не обращаем внимания на нахождение этого газа в воздухе, ведь на нашем организме это никак не отражается, а вот канарейки очень чувствительны к метану.

Когда-то они даже помогали шахтерам спускаться под землю. Когда процентное содержание метана изменялась, птицы переставали петь. Это служило сигналом для человека, что он спустился слишком глубоко и нужно подниматься наверх.

Образуется метан в результате распада остатков живых организмов. Не случайно с английского methane переводится, как болотный газ, ведь он может быть обнаружен в заболоченных водоемах и каменноугольных шахтах.

Основным источником газа в агропромышленном комплексе является рогатый скот. Да, метан они выводят из организма вместе с остальными продуктами жизнедеятельности. Кстати, увеличение числа рогатого скота на планете может привести к разрушению озонового слоя, ведь метан с кислородом образуют взрывоопасную смесь.

Метан в промышленности можно получить с помощью нагревания углерода и водорода или синтеза водяного газа, все реакции протекают в присутствии катализатора, чаще всего никеля.

В США разработана целая система по добыче метана, она способна извлечь до 80% газа из природного угля. На сегодняшний день мировые запасы метана оцениваются экспертами в 260 триллионов метров кубических! Даже запасы природного газа значительно меньше.

В лаборатории метан получают путем взаимодействия карбида алюминия (неорганическое соединение алюминия с углеродом) и воды. Также с помощью гидроксида натрия, вступающего в реакцию с ацетатом натрия, более известного как пищевая добавка Е262.

Физические свойства метана

Характеристика:

  1. Бесцветный газ, без запаха.
  2. Взрывоопасен.
  3. Нерастворим в воде.
  4. Температура кипения: -162oC, замерзания: -183°C.
  5. Молярная масса: 16,044 г/моль.
  6. Плотность: 0,656 кг/м³.

Химические свойства метана

Говоря о химических свойствах, выделяют те реакции, в которые вступает метан. Ниже они приведены вместе с формулами.

Горение метана

Как все органические вещества, метан горит. Можно заметить, что при горении образуется голубоватое пламя.

СН4 + 2O2 → СO2↑ + 2Н2O

Называется такая реакция – реакцией горения или полного окисления.

Замещение

Метан также реагирует с галогенами. Это химические элементы 17 группы в периодической таблице Менделеева. К ним относятся: фтор, хлор, бром, йод и астат. Реакция с галогенами называется – реакцией замещения или галогенирования. Такая реакция проходит только в присутствии света.

Хлорирование и бромирование

Если в качестве галогена используется хлор, то реакция будет называться – реакцией хлорирования. Если в качестве галогена выступает бром, то – бромирование, и так далее.

CH4 + Cl2 → CH3Cl + НСl

CH4 + Br2 → CH3Br + НBr

Хлорирование. Низшие алканы могут прохлорировать полностью.

CH4 + Cl2 → CH3Cl + НСl

CH3Cl + Cl2 → CH2Сl2 + НСl

CH2Сl2+ Cl2 → CHCl3 + НСl

CHCl3 + Cl2 → CСl4 + НСl

Точно так же метан может полностью вступать в реакцию бромирования.

CH4 + Br2 → CH3Br + Н Br

CH3Br + Br2 → CH2Br2 + НBr

CH2Br2 + Br2 → CHBr3 + НBr

CHBr3 + Br2 → CBr4 + НBr

С йодом такой реакции уже нет, а с фтором наоборот сопровождается быстрым взрывом.

Разложение

Так же этому углеводороду свойственна реакция разложения. Полное разложение:

СН4 → С + 2H₂

И неполное разложение:

2СН4 → С2Н2 + 3Н2

Реакция с кислотами

Метан реагирует с концентрированной серной кислотой. Реакция носит название сульфирования и происходит при небольшом нагревании.

2СН4 + Н2SО4 → СН3SО3Н + Н2О

Окисление

Как уже было сказано, СH4 может полностью окисляться, но при недостатке кислорода возможно неполное окисление.

2СН4 + 3O2 → 2CO + 4Н2O

СН4 + О2 → С + 2Н2O

Помимо прочего для этого газа характерно каталитическое окисление. Оно происходит в присутствии катализатора. При разном соотношении моль вещества получаются разные конечные продукты реакции. В основном это:

  • спирты: 2СН4 + O2 → 2СO3OН
  • альдегиды: СН4 + O2 → НСОН + Н2O
  • карбоновые кислоты: 2СН4 + 3O2 → 2НСОOН + 2Н2O

Реакция протекает при температуре 1500°C. Данная реакция также носит название – крекинг – термическое разложение.

Нитрование метана

Существует также реакция нитрования или реакция Коновалова, названная в честь ученого, который доказал, что с предельными углеводородами действует разбавленная азотная кислота. Продукты реакции получили название – нитросоединения.

CH4 + НNО3 → СН3NO2 + H2O

Реакция проводится при температуре 140-150°C.

Дегидрирование метана

Кроме того, для метана характерна реакция дегидрирования (разложения) – отцепление атомов водорода и получения ацетилена, в данном случае.

2CН4 → C2H2 + 3Н2

Применение метана

Метан, как и остальные предельные углеводороды, широко используется в повседневной жизни. Его применяют в производстве бензина, авиационного и дизельного топлива.

Используют в качестве базы для получения различного органического сырья на предприятиях. Также метан широко используется в медицине и косметологии.

Метан применяют для получения синтетического каучука, красок и шин.

Атлеты используют так называемый жидкий метан для быстрого набора массы за короткий промежуток времени.

А при хлорировании метана образуется вещество, которое в дальнейшем используется для обезжиривания поверхностей или как компонент в средствах для снятия лака. Некоторое время продукт взаимодействия метана и хлора использовали в качестве наркоза.

Источник: https://1001student.ru/himiya/formula-metana.html

Метан, получение, свойства, химические реакции

Метан относится. Метан — химические свойства

Метан, CH4 – простейший по составу предельный углеводород, органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе, в рудничном и болотном газах. Растворен в нефти, в пластовых и поверхностных водах. В твердом состоянии встречается в виде газогидратов.

Метан, формула, газ, характеристики

Физические свойства метана

Химические свойства метана

Получение метана в промышленности и лаборатории

Химические реакции – уравнения получения метана

Применение и использование метана

Метан, формула, газ, характеристики:

Метан (лат. methanum) –  простейший по составу предельный углеводород, органическое вещество класса алканов, состоящий из одного атома углерода и четырех атомов водорода.

Химическая формула метана CH4, рациональная формула CH4. Изомеров не имеет.

Строение молекулы:

Метан – в обычных условиях лёгкий бесцветный газ, без вкуса и запаха. Однако в метан, используемый в качестве технического газа, могут добавляться  одоранты — вещества, имеющие резкий неприятный запах для предупреждения его утечки.

Метан – это основной компонент природного газа.

Является одним из парниковых газов. Его вклад в парниковый эффект составляет 4-9 %.

В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа. Также содержится в рудничном и болотном газах (отсюда произошли другие названия метана – болотный или рудничный газ), свалочном газе.

В анаэробных условиях (в болотах, переувлажнённых почвах, на дне прудов и стоячих вод, где он образуется при разложении растительных остатков без доступа воздуха, в кишечнике жвачных животных, биореакторах, биогазовых установках и пр.) образуется биогенно в результате жизнедеятельности некоторых микроорганизмов.

В растворенном виде содержится в нефти, в пластовых и поверхностных водах. При переработке нефти метан выделяют отдельно для дальнейшего использования.

Помимо газообразного состояния в природе встречается еще и в твердом состоянии на дне морей, океанов и в зоне вечной мерзлоты в виде метаногидратов (гидратов природного газа), именуемых «горючий лёд».

Также содержится в сланцевой нефти, сланцевом газе и сжиженном газе (сжиженном природном газе).

Пожаро- и взрывоопасен.

Почти не растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).

Метан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Физические свойства метана:

Наименование параметра:Значение:
Цветбез цвета
Запахбез запаха
Вкусбез вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м30,6682
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м30,7168
Плотность (при -164,6 °C и атмосферном давлении 1 атм.), кг/м3415
Температура плавления, °C-182,49
Температура кипения, °C-161,58
Температура самовоспламенения, °C537,8
Критическая температура*, °C-82,4
Критическое давление, МПа4,58
Критический удельный объём,  м3/кг0,0062
Взрывоопасные концентрации смеси газа с воздухом, % объёмныхот 4,4 до 17,0
Удельная теплота сгорания, МДж/кг50,1
Коэффициент теплопроводности (при 0 °C и атмосферном давлении 1 атм.), Вт/(м·К)0,0302
Коэффициент теплопроводности (при 50 °C и атмосферном давлении 1 атм.), Вт/(м·К)0,0361
Молярная масса, г/моль16,04
Растворимость в воде, г/кг0,02

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства метана:

Метан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Химические свойства метана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:

  1. 1. конверсия метана в синтез-газ:

CH4 + H2O → CО + 3H2 (kat = Ni/Al2O3 при to = 800-900 оС или без катализатора при to = 1400-1600 оС).

Образующийся в результате реакции синтез-газ может быть использован для последующих синтезов метанола, углеводородов, уксусной кислоты, ацетальдегида и других продуктов.

  1. 2. галогенирование метана:

CH4 + Br2 → CH3Br + HBr (hv или повышенная to);

CH4 + I2 → CH3I + HI (hv или повышенная to).

Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы метана, отрывая у них атом водорода, в результате этого образуется свободный метил  CH3·, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома:

Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;

CH4 + Br· → CH3· + HBr; – рост цепи реакции галогенирования;

CH3· + Br2 → CH3Br + Br·;

CH3· + Br· → CH3Br; – обрыв цепи реакции галогенирования.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование метана проходит поэтапно – за один этап замещается не более одного атома водорода.

CH4 + Br2 → CH3Br + HBr (hv или повышенная to);

CH3Br + Br2 → CH2Br2 + HBr (hv или повышенная to);

и т.д.

Галогенирование будет происходить и далее пока, не будут замещены все атомы водорода.

CH2Br2 + Br2 → CHBr3 + HBr (hv или повышенная to);

CHBr3 + Br2 → CBr4 + HBr (hv или повышенная to).

См. нитрование этана.

  1. 4. окисление (горение) метана:

При избытке кислорода:

CH4 + 2O2 → CO2 + 2H2O.

Горит голубоватым пламенем.

При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод (сажа в различном виде, в т.ч. в виде графена, фуллерена и пр.) либо их смесь.

  1. 5. сульфохлорирование метана:

CH4 + SO2 + Cl2 → CH3-SO2Cl + … (hv).

  1. 6. сульфоокисление метана:

2CH4 + 2SO2 + О2 → 2CH3-SO2ОН (повышенная to).

CH4 → C + 2H2 (при to > 1000 оС).

  1. 8. дегидрирование метана:

2CH4  → C2H2 + 3H2 (при to > 1500 оС).

  1. 9. каталитическое окисление метана:

В реакциях каталитического окисления метана могут образовываться спирты, альдегиды, карбоновые кислоты.

2CH4 + O2 → 2CН3OH (при to = 200 оС, kat); – образуется метанол;

CH4 + O2 → НCНO + H2O (при to = 200 оС, kat); – образуется формальдегид;

2CH4 + 3O2 → 2НCOОН  + H2O (при to = 200 оС, kat); – образуется муравьиная кислота.

Получение метана в промышленности и в лаборатории. Химические реакции – уравнения получения метана:

Так как метан в большом количестве встречается в природе.

Например,  содержится в природном газе, попутном нефтяном газе и выделяется при крекинге нефтепродуктов, его, как правило, не получают искусственно.

Его выделяют при очистке и сепарации из природного газа, ПНГ и нефти при перегонке. Кроме того, его получают из метаногидратов (гидратов природного газа), в процессе эксплуатации биогазовых установок и пр.

Метан в промышленных и лабораторных условиях получается в результате следующих химических реакций:

  1. 1. газификации твердого топлива:

C + 2H2 → CH4 + H2O (повышенное давление и to, kat = Ni, Mo или без катализатора).

  1. 2. синтеза Фишера-Тропша:

CО + 3H2 → CH4 (kat = Ni, to = 200-300 оС);

  1. 3. реакции взаимодействия оксида углерода (IV) и водорода:

CО2 + 4H2 → CH4 + 2H2O (kat, to = 200-300 оС);

  1. 4. гидролиза карбида алюминия:

Al4C3 + 12H2O → CH4 + 4Al(OH)3.

  1. 5. щелочного плавления солей одноосновных органических кислот

CH3-COONa + NaOH → CH4 + Na2CO3 (повышенная to).

Применение и использование метана:

– как топливо для автомобилей, судов, газовых плит, печей, паяльных ламп, зажигалок и пр. бытовых приборов;

– как сырье в химической промышленности для проведения реакций органического синтеза.

Примечание: © Фото //www.pexels.com, //pixabay.com

Еще технологии…

карта сайта

как получить метан этилен реакция ацетилен этен 1 2 вещество хлорметан метанол кислород водород связь является углекислый газ бромная вода
уравнение реакции масса объем полное сгорание моль молекула смесь превращение горение получение метана
напишите уравнение реакций метан

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/metan-poluchenie-svoystva-himicheskie-reaktsii/

Углеводороды предельные и непредельные: метан, этан, этилен, ацетилен – HIMI4KA

Метан относится. Метан — химические свойства
ОГЭ 2018 по химии › Подготовка к ОГЭ 2018

Органическая химия — это химия углеводородов и их производных.

Основные положения теории строения органических соединений:

  1. Все атомы, образующие молекулы органического вещества, связаны в определённой последовательности согласно их валентностям.
  2. Свойства веществ зависят от строения молекул, т. е. свойства и строение взаимосвязаны между собой.
  3. Зная свойства вещества, можно установить его строение, и наоборот, химическое строение органического соединения может много сказать о его свойствах.
  4. Химические свойства атомов и атомных группировок не являются постоянными, а зависят от других атомов (атомных групп), находящихся в молекуле. При этом наиболее сильное влияние атомов наблюдается в случае, если они непосредственно связаны друг с другом.

Ниже приводятся основные термины, используемые в органической химии.

Изомерией называют явление существования органических соединений с одинаковым качественным и количественным составом, но с различными свойствами.

Изомерами называют химические соединения, имеющие одинаковый качественный и количественный состав, но разное химическое строение и разные свойства.

Структурной называют изомерию, вызванную наличием химических соединений с одинаковым составом, но с различным порядком связи структурных элементов. Различают изомерию углеродного скелета, изомерию положения заместителя или кратной связи.

Геометрическая, или цис-транс-изомерия, — явление существования веществ с различным расположением заместителей относительно двойной связи.

Геометрическая изомерия возможна как у соединений с двойной связью, так и у алициклических соединений.

Если одинаковые группы атомов располагаются по разные стороны от плоскости π-связи, то такие соединения называют транс-изомерами, если одинаковые группы атомов располагаются по одну сторону от плоскости -связи, то такие соединения называют цис-изомерами.

Вещества, обладающие сходным химическим строением и химическими свойствами, но отличающиеся между собой на одну или несколько CH2-групп, называют гомологами. Гомологи образуют гомологичные ряды. Свой гомологичный ряд существует для каждого класса органических соединений.

Химическую связь, максимальная электронная плотность которой находится на линии связывания ядер, называют σ-связью. Химическую связь, максимальная электронная плотность которой находится вне линии связывания ядер, называют π-связью.

В молекулах органических веществ атом углерода всегда находится в одном из трёх гибридных состояний с различными типами гибридизации:

sp3-гибридизация. При этой гибридизации происходит смешение одной 2s- и трёх 2p-орбиталей, в результате чего образуются четыре одинаковые sp3-гибридные орбитали. Валентный угол 109° 28′. Атом углерода, находящийся в состоянии sp3, связан с четырьмя другими атомами простыми (одинарными) связями. Все эти связи являются σ-связями.

sp2-гибридизация. При этой гибридизации происходит смешение одной 2s- и двух 2p-орбиталей, в результате чего образуются три одинаковые sp2-гибридные орбитали. Валентный угол 120°. Атом углерода, находящийся в состоянии sp2, связан с каким-либо другим атомом двойной связью, например: >C=CC=O; >C=N–. Одна из двойных связей является σ-связью, другая — π-связью.

sp-гибридизация. При этой гибридизации происходит смешение одной 2s- и одной 2p-орбитали, в результате чего образуются две одинаковые sp-гибридные орбитали. Валентный угол 180°. Атом углерода, находящийся в состоянии sp, связан с каким-либо другим атомом тройной связью, например: –C≡C–; –C≡N. Одна из тройных связей является σ-связью, две другие — π-связями.

Углеводородами называют органические вещества, состоящие только из углерода и водорода. По составу их классифицируют на насыщенные и ненасыщенные, по строению — на алифатические, циклические и ароматические.

Алканами называют предельные алифатические углеводороды, отвечающие общей формуле CnH2n+2, в молекулах которых атомы углерода связаны между собой простой (одинарной) σ-связью.

Родоначальником класса предельных углеводородов является метан, CH4. Он представляет собой газ без цвета и запаха, очень мало растворим в воде. Его температура кипения равна –162 °С, а температура плавления — –182 °С. Метан широко распространён в природе. Он образуется в результате разложения без доступа воздуха остатков животных и растительных организмов.

Метан — основной компонент природного газа, кроме того, его получают в качестве попутного газа при нефтедобыче.

Метан, как и другие представители предельных углеводородов, достаточно устойчивы химически. Они не взаимодействуют ни со щелочами, ни с кислотами (за исключением азотной), не реагируют с активными металлами.

Для метана прежде всего характерны реакции замещения, которые протекают по радикальному механизму. Этот механизм химической реакции подробнее изучают в курсе органической химии.

Взаимодействие метана с хлором протекает на свету или при температуре 300 °С. Иногда этот процесс может сопровождаться взрывом. При этом происходит последовательное замещение атомов водорода на хлор. В зависимости от соотношения в качестве основного продукта реакции могут образовываться различные хлорпроизводные:

При сгорании метана в кислороде или на воздухе выделяется углекислый газ, вода и значительное количество тепла:

Именно поэтому его используют в качестве дешёвого топлива.

Термическое разложение метана протекает по различным направления в зависимости от температуры:

При температуре около 800 °С в присутствии никелевого катализатора метан вступает во взаимодействие с водяными парами с образованием так называемого синтез-газа:

В дальнейшем из синтез-газа получают многочисленные продукты органического синтеза.

Этан — ближайший гомолог метана. Его брутто-формула C2H6, структурная формула H3C–CH3. Он представляет собой газ без цвета и запаха, очень мало растворим в воде. Его температура кипения равна –89 °С, а температура плавления –183 °С. Этан широко распространен в природе. В составе попутного газа встречается до 10—15% этана.

Так же, как и метан, этан вступает в реакции замещения:

На воздухе этан горит слабо светящимся пламенем:

Реакция дегидрирования, т. е. отщепление водорода, приводит к этилену:

Этан используют как исходное сырье для получения этилена, каучуков и т. д.

Этилен, брутто-формула C2H4, структурная формула H2C=CH2, представляет собой бесцветный газ, малорастворимый в воде. Его температура кипения равна –103,7 °С, а температура плавления –169,1 °С.

Этилен в промышленности получают из этана или метана. Эти реакции были описаны выше. В лабораторной практике этилен получают с помощью реакции дегидратации (отщепления воды) от этилового спирта.

Одновременно катализатором этого процесса и водоотнимающим средством является концентрированная серная кислота:

Для этилена характерны реакции присоединения. Он легко обесцвечивает раствор брома в воде или четырёххлористом углероде, присоединяет водород (реакция гидрирования), бромоводород (реакция гидробромирования) и воду (реакция гидратации):

Этилен широко применяют для синтеза различных органических веществ: этилового спирта, стирола, галогенпроизводных, полиэтилена, окиси этилена и т. д.

Ацетилен (этин), брутто-формула C2H2, структурная формула HC=CH, представляет собой бесцветный газ, немного растворимый в воде. Его температура кипения равна –83,8 °С.

Ацетилен в промышленности получают из метана (реакция описана выше) или этана. В лабораторной практике ацетилен получают с помощью реакции карбида кальция с водой или кислотами:

Для ацетилена прежде всего характерны реакции присоединения.

В присутствии катализаторов он легко присоединяет водород, образуя вначале этилен, а потом этан:

Ацетилен обесцвечивает раствор брома в воде или четырёххлористом углероде. При этом происходит последовательное присоединение брома по кратным связям:

Присоединение хлороводорода вначале приведет к образованию хлористого винила, а затем 1,1-дихлорэтана:

Ацетилен реагирует с водой с образованием уксусного альдегида (реакция Кучерова). Катализатором в данном процессе выступают соли ртути.

При сгорании ацетилена в кислороде развивается очень высокая температура, поэтому ацетилен-кислородное пламя используют для сварки и резки металлов:

Ацетилен имеет огромное значение как исходное вещество в органическом синтезе. Из ацетилена получают уксусный альдегид, который далее перерабатывают в уксусную кислоту и её различные эфиры; винилацетилен, перерабатываемый в хлоропрен и хлоропреновые каучуки; хлорвинил и поливинилхлорид; дихлорэтан, глицерин, винилацетат, поливинилацетатный клей.

Тренировочные задания

1. Для метана верны следующие утверждения:

1) его молекула образована атомом углерода в sp-гибридном состоянии 2) это низкокипящая жидкость, хорошо растворимая в воде 3) это низкокипящий газ, плохо растворимый в воде 4) является основным компонентом природного газа

5) легко реагирует с разбавленной серной кислотой

2. Для метана верны следующие утверждения:

1) его молекула образована атомом углерода в состоянии sp2-гибридизации 2) метан реагирует с парами разбавленной азотной кислоты 3) метан обладает характерным неприятным запахом 4) сгорает на воздухе с образованием угарного газа и воды

5) сгорает на воздухе с образованием углекислого газа и воды.

3. Для этана верны следующие утверждения:

1) это бесцветный газ, немного легче воздуха 2) это бесцветный газ, немного тяжелее воздуха 3) при его взаимодействии с водой образуется этиловый спирт 4) при его дегидрировании образуется этилен

5) все атомы углерода в нём — третичные

4. Для этана верны следующие утверждения:

1) оба атома углерода в его молекуле являются первичными 2) не реагирует с гидроксидом натрия 3) реагирует с серной кислотой 4) реагирует с метаном

5) обладает резким неприятным запахом

5. Для этилена верны следующие утверждения:

1) оба атома углерода в его молекуле находятся в состоянии sp2-гибридизации 2) плотность паров этилена равна плотности паров азота 3) не реагирует с водой 4) не сгорает в кислороде

5) не присоединяет хлор

6. Для этилена верны следующие утверждения:

1) при нормальных условиях это легкокипящая жидкость, хорошо растворимая в воде 2) оба атома углерода в его молекуле находятся в состоянии sp3-гибридизации 3) взаимодействует с водой с образованием уксусной кислоты 4) взаимодействует с бромной водой с образованием 1,2-дибромэтана

5) взаимодействует с водой с образованием этилового спирта

7. Для ацетилена верны следующие утверждения:

1) при нормальных условиях это газ, пары которого легче воздуха 2) при нормальных условиях это газ, пары которого тяжелее воздуха 3) не реагирует с бромом 4) реагирует с водой с образованием этанола

5) реагирует с водой с образованием уксусного альдегида

8. Для ацетилена верны следующие утверждения:

1) атомы углерода в его молекуле находятся в состоянии sp2-гибридизации и соединены двойной связью 2) атомы углерода в его молекуле соединены тройной связью и находятся в состоянии sp-гибридизации 3) при его сгорании в кислороде образуется угарный газ и вода 4) при его сгорании в кислороде образуется углекислый газ и вода

5) реагирует с азотом

Ответы

Источник: https://himi4ka.ru/ogje-2018-po-himii/urok-20-uglevodorody-predelnye-i-nepredelnye-metan-jetan-jetilen-acetilen.html

Метан – формула, строение и основные свойства природного газа

Метан относится. Метан — химические свойства

Природный метан образуется при гниении останков живых организмов. В переводе с английского «methane» означает «болотный газ», так как чаще всего его обнаруживают в болотах и каменноугольных шахтах.

Почти 95% реагента появляется в результате биологических процессов. Пятая часть годовых выбросов газа в атмосферу приходится на коз и коров, в желудках которых живут бактерии, вырабатывающие метан. В атмосферу он попадает, когда рогатый скот выводит из организма продукты своей жизнедеятельности.

Другими источниками вещества являются:

  • термиты;
  • рис-сырец;
  • болотистые водоёмы;
  • фильтрация природного газа;
  • фотосинтез растений;
  • вулканы;
  • давно погибшие организмы.

Поскольку вещество обычно связано с живыми организмами, то учёные полагают, что его присутствие на планете указывает на наличие жизни.

Так, когда этот газ был обнаружен в атмосферах Марса, специалисты начали тщательное изучение планеты именно на предмет существования живых организмов.

Но дальнейшие исследования показали, что на удалённых планетах Солнечной системы метана значительно больше, хотя там он появился в результате химических реакций.

На Земле вещество просачивается через трещины в земной коре, находящиеся на океанском дне, в больших количествах выделяется во время горных разработок и при лесных пожарах. Кроме того, недавно учёными был обнаружен новый источник газа, который никогда ранее в таком ключе не рассматривался.

Физические качества

Метан представляет собой самый простой углеводород. Считается, что он имеет специфический запах, но это распространённое заблуждение. Чистый газ не имеет запаха, характерный аромат он приобретает благодаря специальным добавкам, которые добавляют в вещество для предупреждения о его утечке, ведь цвета химическое соединение также не имеет.

Кроме того, к физическим свойствам метана относятся:

  • Горение голубым пламенем.
  • Сгорание без выделения вредных продуктов.
  • Плохая растворимость в воде.
  • Он легче воздуха.
  • Основная составляющая природных, попутных нефтяных, рудничного и болотного газов.
  • Кипение при температуре -161 °C.
  • Замерзание при температуре -183 °C.
  • Молярная масса составляет 16,044 г/моль.
  • Плотность — 0,656 кг/м³.
  • При соединении с воздухом образуются взрывоопасные смеси.
  • В жидком виде представляет собой бесцветную жидкость без запаха.

Наиболее опасен метан, который выделяется во время подземных разработок полезных ископаемых, а также на фабриках, занимающихся переработкой и обогащением угля. Когда количество газа в воздухе достигает 5−6%, то он начинает гореть рядом с источниками тепла.

Если уровень вещества поднимается до 14−16%, то может произойти взрыв. При увеличении концентрации вещество горит при постоянном поступлении кислорода.

Если же в этот момент количество метана начнёт снижаться, то результатом также может стать взрыв. При взрыве огонь, подпитываемый газом, движется со скоростью от 500 до 700 м/сек.

Давление же вещества в этот момент в замкнутом пространстве составляет 1 Мн/м2.

При соприкосновении с источником тепла метан воспламеняется с небольшой задержкой. Это свойство вещества применяется при изготовлении предохранительных взрывчатых веществ и электрооборудования, безопасного при взрывах. На всех объектах, где существует опасность выброса метана, действуют правила техники безопасности «газовый режим».

Химические свойства

В химии формула метана — CH4. Соединение плохо вступает в химические связи.

В обычных условиях оно не реагирует со следующими веществами:

  • концентрированные кислоты;
  • расплавленные и концентрированные щелочи;
  • щелочные металлические реагенты;
  • галогены;
  • перманганат калия;
  • дихромат калия в кислой среде.

При температуре около 200 °C и давлении от 30 до 90 атмосфер болотный газ окисляется, преобразуясь в муравьиную кислоту. Вещество образует соединения, называемые газовыми гидратами, которые часто встречаются в природе.

По своим химическим свойствам метан схож с другими реагентами, относящимися к алканам. А потому он вступает в такие химические реакции, как:

  • Конверсия в синтез-газ. Синтез-газ, который образуется в результате указанной реакции, используется для получения метанола, углеводородов и так далее.
  • Галогенирование. Такая реакция является цепной. При ней молекула брома или йода подвергается воздействию света и распадается на радикалы, которое затем атакуют молекулы метана. В результате от соединения отрывается атом водорода, а газ становится свободным метилом CH3. Получившееся вещество сталкивается с молекулами брома или йода, которые разрушаются, образуя новые радикалы этих реагентов.
  • Нитрование.
  • Окисление или горение. Эта реакция происходит при избытке кислорода и описывается следующим уравнением: CH4 + 2O2 → CO2 + 2H2O. В этом случае пламя имеет голубой цвет. Если кислорода недостаточно, то результатом реакции становится выработка не углекислого газа, а оксида углерода. Если же кислорода ещё меньше, то взаимодействие веществ приведёт к выделению мелкодисперсного углерода.
  • Сульфохлорирование.
  • Сульфоокисление.
  • Разложение.
  • Дегидрирование.
  • Каталитическое окисление. В подобных реакциях из болотного газа образуются карбоновые кислоты, спирты, альдегиды.

Получение в промышленности и лаборатории

В промышленных условиях вещество получают посредством нагревания углерода и водорода или синтеза водяного газа. Для того чтобы реакция протекала успешно, используют катализатор, обычно в этом качестве применяется никель.

В США для добычи простейшего углеводорода используется специальная система, способная извлекать соединение из природного угля.

Но также метан выделяется в виде подобного продукта при термической переработке нефти и нефтепродуктов, коксовании и гидрировании каменного угля.

В лаборатории для получения вещества применяются следующие методы:

  • Реакция гидроксида натрия с ацетатом натрия.
  • Взаимодействие карбида алюминия.
  • Нагревание натристой извести с уксусной кислотой. Для этой реакции необходима безводная среда, а потому в ней применяется гидроксид натрия, который является наименее гигроскопичным.

Болотный газ самый термически устойчивый углеводород, а потому он широко применяется и в быту, и в промышленности.

Хлорирование вещества даёт возможность получения метилхлорида, метиленхлорида, хлороформа, четырёххлористого углерода.

Результатом его неполного сгорания является сажа, Если метан каталитически окисляется, то получается формальдегид. А его реакция с серой приводит к образованию сероуглерода.

К важным методам получения ацетилена из простейшего углеводорода относятся:

  • термоокислительный крекинг,
  • электрокрекинг.

Газ также применяется для производства синильной кислоты. Кроме того, он даёт водород, необходимый для выработки водяного газа, который, в свою очередь, применяется для создания углеводородов, альдегидов и тому подобного. Кроме того, метан необходим при производстве нитрометана.

В настоящее время газ стал часто использоваться в качестве автомобильного топлива. Но его плотность в 1000 раз меньше плотности бензина, а потому, чтобы заправить автомобиль метаном на тот же объём, что и бензином, при равном давлении необходим соответствующий бак. В таком случае для обычной поездки потребовалось бы возить прицеп с топливом.

Учёные решили эту проблему, увеличив плотность газа до 200−250 атмосфер. Сжатое вещество закачивается в специальные баллоны, установленные на автомобилях особой конструкции.

Парниковый эффект

Метан является одним из газов, создающих на планете парниковый эффект.

Чтобы измерить уровень его парниковой активности, необходимо принять за единицу меру воздействия на климат нашей планеты диоксида углерода. При таком соотношении влияние метана будет равно 23.

Специалисты в области изучения парникового эффекта отмечают, что количество указанного газа в земной атмосфере значительно выросло за последние два столетия.

Объём метана в современной атмосфере в среднем составляет 1,8 части на миллион. Это количество в 200 раз меньше того же показателя углекислого газа.

Необходимо отметить, что молекулы соединения рассеивают и удерживают теплоту, которую излучает нагретая солнцем планета, гораздо лучше, чем молекулы углекислого газа.

И также необходимо отметить, что углеводород поглощает земное излучение в тех спектральных областях, которые свободно проходят через другие газовые соединения, создающие эффект парника.

Но тем не менее такие газы планете необходимы. Без двуокиси углерода, водяных паров, метана и других составляющих атмосферы температура на поверхности Земли была бы значительно ниже средних 15 градусов тепла.

Влияние на организм человека

Человек может отравиться, надышавшись метаном при аварии на производстве или из-за неправильного обращения с приборами, работающими на этом газе. Возможна такая ситуация и при длительном нахождении на болоте, в шахте. Если концентрация вещества в воздухе составляет 20 и более процентов, то отравление может быть очень тяжёлым, вплоть до летального исхода.

Работники химических производств, рудников и шахт подвержены другому способу отравления углеводородом. Зачастую эти люди на протяжении длительного времени регулярно вдыхают небольшие дозы вещества.

Кроме того, хроническая интоксикация может наступить из-за заболеваний кишечника, например, дисбактериоза. В таких случаях в организме больного метан образуется в повышенном количестве. Этот газ не станет причиной серьёзной интоксикации, но всё же он может вызвать в организме разные нарушения, привести к желудочно-кишечному дискомфорту и общему ухудшению самочувствия.

Отличить острое отравление метаном можно по следующим признакам:

  • головокружение;
  • шум в ушах;
  • сонливость;
  • общая слабость;
  • потеря координации;
  • нарушение речи;
  • резь в глазах;
  • слезотечение;
  • удушье;
  • усиленное сердцебиение;
  • понижение артериального давления;
  • тошнота;
  • приступы рвоты;
  • синюшность кожных покровов и слизистых оболочек.

Если отравление тяжёлое, то человек теряет сознание, у него начинаются судороги, за которыми следует кома. А также возможна остановка дыхания и сердцебиения.

Если отравление метаном является хроническим, то пострадавший страдает от частых головных болей, общего недомогания, низкого артериального давления и снижения работоспособности.

Человек становится бледным и вялым, испытывает упадок сил. Гипотония может вызывать обмороки.

И также возможно истощение нервной системы, которое выражается в повышенной раздражительности, нервозности и тому подобном.

Метан известен, как один из самых опасных газов. Он токсичен, горюч и взрывоопасен. Вещество не имеет ни цвета, ни запаха, а потому обнаружить его в воздухе крайне сложно. Чтобы не подвергать своё здоровье и жизнь опасности, следует внимательно относится к технике безопасности и соблюдать осторожность при работе или бытовом использовании метана.

Источник: https://nauka.club/khimiya/metan.html

Метан

Метан относится. Метан — химические свойства

TR | UK | KK | BE | EN |
метандиенон, метан станции в българия
Мета́н (лат. Methanum) — простейший углеводород, бесцветный газ (в нормальных условиях) без запаха, химическая формула — CH4. Малорастворим в воде, легче воздуха.

При использовании в быту, промышленности в метан обычно добавляют одоранты (обычно тиолы) со специфическим «запахом газа». Метан нетоксичен и неопасен для здоровья человека.

Однако имеются данные, что метан относится к токсическим веществам, действующим на центральную нервную систему.

Накапливаясь в закрытом помещении, метан взрывоопасен. Обогащение одорантами делается для того, чтобы человек вовремя заметил утечку газа. На промышленных производствах эту роль выполняют датчики, и во многих случаях метан для лабораторий и промышленных производств остаётся без запаха.

Метан — первый член гомологического ряда насыщенных углеводородов (алканов), наиболее устойчив к химическим воздействиям. Подобно другим алканам вступает в реакции радикального замещения (галогенирования, сульфохлорирования, сульфоокисления, нитрования и др.

), но обладает меньшей реакционной способностью.

Специфична для метана реакция с парами воды, которая протекает на Ni/Al2O3 при 800—900 °C или без катализатора при 1400—1600 °C; образующийся синтез-газ может быть использован для синтеза метанола, углеводородов, уксусной кислоты, ацетальдегида и других продуктов.

Взрывоопасен при концентрации в воздухе от 4,4 % до 17 %. Наиболее взрывоопасная концентрация 9,5 %. Является наркотиком; действие ослабляется ничтожной растворимостью в воде и крови. Класс опасности — четвёртый.

Сэр Гемфри Дэви (учёный-химик) ещё в 1813 г. заключил из своих анализов, что рудничный газ есть смесь метана CH4 с небольшим количеством азота N2 и угольного ангидрида СО2 — т.е., что он качественно тождественен по составу с газом, выделяющимся из болот.

  • 1 Нахождение в природе
  • 2 В промышленности
  • 3 Классификация по происхождению
  • 4 Получение
  • 5 Химические свойства
  • 6 Соединения включения
  • 7 Применение метана
  • 8 Физиологическое действие
    • 8.1 Хроническое действие метана
  • 9 Биологическая роль
  • 10 Метан и экология
  • 11 Ссылки
  • 12 Примечания
  • 13 Литература

Нахождение в природе

Основной компонент природного газа (77—99 %), попутных нефтяных газов (31—90 %), рудничного и болотного газов (отсюда произошли другие названия метана — болотный или рудничный газ). В анаэробных условиях (в болотах, переувлажнённых почвах, кишечнике жвачных животных) образуется биогенно в результате жизнедеятельности некоторых микроорганизмов.

По современным данным, в атмосферах планет-гигантов солнечной системы в заметных концентрациях содержится метан.

Предположительно, на поверхности Титана в условиях низких температур (−180 °C) существуют целые озёра и реки из жидкой метано-этановой смеси. Велика доля метановых льдов и на поверхности Седны.

В промышленности

Образуется при коксовании каменного угля, гидрировании угля, гидрогенолизе углеводородов в реакциях каталитического риформинга.

Классификация по происхождению

  • абиогенный — образован в результате химических реакций неорганических соединений, например, при взаимодействии карбидов металлов с водой;
  • биогенный — образован как результат химической трансформации органического вещества;
  • бактериальный (микробный) — образован в результате жизнедеятельности бактерий;
  • термогенный — образован в ходе термохимических процессов.

Получение

В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и кальция) или безводного гидроксида натрия с ледяной уксусной кислотой.

Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.

Возможно получение метана сплавлением ацетата натрия с гидроксидом натрия:

Также для лабораторного получения метана используют гидролиз карбида алюминия или некоторых металлорганических соединений (например, метилмагнийбромида).

Соединения включения

Метан образует соединения включения — газовые гидраты, широко распространенные в природе.

Физиологическое действие

Метан является самым физиологически безвредным газом в гомологическом ряду парафиновых углеводородов. Физиологическое действие метан не оказывает и не ядовит (из-за малой растворимости метана в воде и плазме крови и присущей парафинам химической инертности).

Погибнуть человеку в воздухе, с высокой концентрацией метана можно только от недостатка кислорода в воздухе для дыхания при очень высоких концентрациях метана. Так, при содержании в воздухе 25—30 % метана появляются первые признаки асфиксии (учащение пульса, увеличение объёма дыхания, нарушение координации тонких мышечных движений и т. д.).

Более высокие концентрации метана в воздухе вызывают у человека кислородное голодание — головную боль, одышку, — симптомы, характерные для горной болезни.

Так как метан легче воздуха, он не скапливается в проветриваемых подземных сооружениях. Поэтому весьма редки случаи гибели людей от вдыхания смеси метана с воздухом от асфиксии.

Первая помощь при тяжелой асфиксии: удаление пострадавшего из вредной атмосферы. При отсутствии дыхания немедленно (до прихода врача) искусственное дыхание изо рта в рот. При отсутствии пульса — непрямой массаж сердца.

Хроническое действие метана

У людей, работающих в шахтах или на производствах, где в воздухе присутствуют в незначительных количествах метан и другие газообразные парафиновые углеводороды, описаны заметные сдвиги со стороны вегетативной нервной системы (положительный глазосердечный рефлекс, резко выраженная атропиновая проба, гипотония) из-за весьма слабого наркотического действия этих веществ, сходного с наркотическим действием диэтилового эфира.

Биологическая роль

Показано, что эндогенный метан способен вырабатываться не только метаногенной микрофлорой кишечника, но и клетками эукариот, и что его образование значительно возрастает при экспериментальном вызывании клеточной гипоксии, например, при нарушении работы митохондрий при помощи отравления организма экспериментального животного азидом натрия, известным митохондриальным ядом. Высказывается предположение, что образование метана клетками эукариот, в частности животных, может быть внутриклеточным или межклеточным сигналом испытываемой клетками гипоксии.

Также показано увеличение образования метана клетками животных и растений под влиянием различных стрессовых факторов, например, бактериальной эндотоксемии или её имитации введением бактериального липополисахарида, хотя, возможно, этот эффект наблюдается не у всех видов животных (в эксперименте исследователи получили его у мышей, но не получили у крыс). Возможно, что образование метана клетками животных в подобных стрессовых условиях играет роль одного из стрессовых сигналов.

Предполагается также, что метан, выделяемый кишечной микрофлорой человека и не усваиваемый организмом человека (он не метаболизируется и частично удаляется вместе с кишечными газами, частично всасывается и удаляется при дыхании через лёгкие), не является «нейтральным» побочным продуктом метаболизма бактерий, а принимает участие в регуляции перистальтики кишечника, а его избыток может вызывать не только вздутие живота, отрыжку, повышенное газообразование и боли в животе, но и функциональные запоры.

Метан и экология

Является парниковым газом, в этом отношении, более сильным, чем углекислый газ, из-за наличия глубоких вращательных полос поглощения его молекул в инфракрасном спектре. Если степень воздействия углекислого газа на климат условно принять за единицу, то парниковая активность того же молярного объема метана составит 21-25 единиц.

ПДК метана в воздухе рабочей зоны составляет 7000 мг/м3.

Ссылки

  • Термодинамические свойства метана.

Примечания

  1. Справочник химика / Редкол.: Никольский Б.П. и др.. — 3-е изд., испр. — Л.: Химия, 1971. — Т. 2. — 1168 с.
  2. Обзор: Растворимость некоторых газов в воде
  3. Статья «Метан» на сайте «Химик»
  4. Львов М. Д. Болотный газ или метан // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  5. З. Гауптман, Ю. Грефе, Х. Ремане «Органическая химия», М. «Химия», 1979, стр. 203.
  6. Куценко С. А. Основы токсикологии / С.А. Куценко. — СПб.: Фолиант, 2004.
  7. ГОСТ Р 52136-2003

Источник: https://www.turkaramamotoru.com/ru/%D0%9C%D0%B5%D1%82%D0%B0%D0%BD-14097.html

Закон
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: